Arkansas Department of Environmental Quality Water Quality Management Plan Update Summary Sheet

Date: December 21, 202	20 Prepared by: SI	Prepared by: Shane Byrum		
New Permit	Renewal Permit	Amer	nded Permit	
Type of Discharge:	Municipal Wastewater	Facility Na	ame: City of	Yellville
Permit No.:	AR0034037	Flow Rate	(MGD):	0.75
Receiving Stream:	Crooked Creek, thence to the White F	River		
HUC + Reach Code:	11010003 + 048	7Q10:	0 cfs ¹	
Planning Segment:	4I	County:	Marion	

Proposed Monthly Average Effluent Limits in mg/L:

May-October:	10/15/1/ <mark>6.2</mark> *	(CBOD5/TSS/NH3-N/DO)	*DO is Inst. Min.
November-March:	10/15/5/6.0*	(CBOD5/TSS/NH3-N/DO)	*DO is Inst. Min.
April:	10/15/3.9/6.0*	(CBOD5/TSS/NH3-N/DO)	*DO is Inst. Min.

Current Monthly Average Effluent Limits in mg/L:

May-October:	10/15/1/6.0	(CBOD5/TSS/NH3-N/DO)
November-March:	10/15/5/6.0	(CBOD5/TSS/NH3-N/DO)
April:	10/15/3.9/6.0	(CBOD5/TSS/NH3-N/DO)

TMDL Limits: None

Justification (Sag = Minimum Modeled Value ≠ Difference in Value):

				Distance			Distance
		DO	DO	to DO	DO	DO	to DO
Reach	Length	WQS _C	Sag _C	Sag _C	WQS _P	Sag _P	Sag _P
No.	(miles)	(mg/L)	(mg/L)	(miles)	(mg/L)	(mg/L)	(miles)
1	0.5	6.0	6.0	0.2	6.0	6.0	0.0

Values in above table are from modeling analysis dated December 21, 2020.

Outfall Location (Lat/Long): 36° 13' 15" N; 92° 39' 50" W

Remarks: This is for the reissuance of the discharge permit for this existing facility. A new model was performed with updated stream hydraulics. Based on the updated model, the 208 Plan is being updated to revise the instantaneous minimum DO limit from 6.0 mg/L to 6.2 mg/L during May-October.

¹ The entire surface flow in Crooked Creek is diverted underground at Yellville at river mile 23 during low-flow conditions, based on a USGS report entitled, "Streamflow Gain and Loss of Selected Streams in Northern Arkansas", 1987, Freiwald, David A., USGS Scientific Investigations Report No. 86-4185. Therefore, this stream segment is considered a losing stream based on Reg. 6.301(B), and the 7Q10 of Crooked Creek at Yellville is considered to be zero at this discharge location.

			Ammonia Calculations			
POTW?	Yes	(Yes or No)			COLOR KEY	
Facility Name	City of Yellville					User Inputs
Major or Minor	Minor					Calculated values
Permit Number	AR0034037					
Receiving Stream	Crooked Creek		Ecoregion or River name	Ozark Highlands		
7Q10, cfs	0	Losing Stream Segment	Watershed area (mi ²)	425		
0.25/0.67 multiplier	0.67		Regulation No. 2 Chronic	Toxicity Critieria (Ins	tream Concentration	1)
Qb, cfs	0.00		_	AML, mg/l	DML, mg/l	
Qe, MGD	0.75	Design flow	April	3.9	3.9	
Qe, cfs	1.16		May - October	3.9	3.9	
Cb, mg/l	0.016	Model input upstream	November - March	10.3	10.3	
Allowable Effluent C	onc., mg/l					
(Qe * Ce) + (Qb* Cl	o) = (Qe + Qb) * IWC			Allowable Effluent	Conc. (Ce), mg/l	
Qe	Effluent Flow			Ce = (IWC (Qe + C	2b) - Cb X Qb) / Qe	
Ce	Allowable Effluent Concen	tration			Monthly Avg.,mg/l	7-Day Avg, mg/l
Qb	% of Low Flow of Receiving	ng Stream		April	3.90	3.90
Cb	Background Concentration	1		May - October	3.90	3.90
IWC	Instream Waste Concentre	ation Chronic Toxic	ity Criteria	November - March	10.30	10.30
Chronic Toxicity C	riteria vs. D.O. Model Lim	its				
	Monthly Average.	ma/l	Permit Limits	7-Dav Ave	erage, mg/l	Permit Limits
Month	Toxicity limit	D.O. limit		Toxicity limit	D.O. limit	
April	3.90	5	3.90	3.90	7.5	3.90
May - October	3.90	1	1.00	3.90	1.5	1.50
November - March	10.30	5	5.00	10.30	7 5	7 50

			Ammonia Toxic	ity Criteria
Minor Permits				
Fish Early Life Stages Absent - Primary Sea	ason (Novembe	er - March),	mg/L	
Ecoregion	Temperature	рН	4-day average	30-day average
Arkansas River	14	7.6	10.3	10.3
Arkansas River Valley	14	6.7	16.7	16.7
Boston Mountains	14	6.9	15.8	15.8
Delta	14	7.1	14.7	14.7
Gulf Coastal Plains	14	6.6	17	17
Ouachita Mountains	14	7.1	14.7	14.7
Ouachita River (L. Missouri to LA state line)	14	6.7	16.7	16.7
Ozark Highlands	14	7.6	10.3	10.3
Red River	14	7.5	11.3	11.3
White River (Dam #1 to Mouth)	14	7.7	9.3	9.3
	(1		•	
Fish Early Life Stages Present - Critical Sea	ison (April - Oc	tober), mg/	L	
Ecoregion	Temperature	рн	4-day average	30-day average
Arkansas River	32	7.6	3.2	3.2
Arkansas River Valley	31	6.7	5.6	5.6
Boston Mountains	31	6.9	5.3	5.3
Delta	30	7.1	5.2	5.2
Gulf Coastal Plains	30	6.6	6.1	6.1
Ouachita Mountains	30	7.1	5.2	5.2
Ouachita River (L. Missouri to LA state line)	32	6.7	5.2	5.2
Ozark Highlands	29	7.6	3.9	3.9
Red River	32	7.5	3.5	3.5
White River (Dam #1 to Mouth)	32	7.7	2.9	2.9

StreamStats Data-Collection Station Report

USGS Station Number	07055608
Station Name	Crooked Creek at Yellville, AR

Click here to link to available data on NWIS-Web for this site.

Descriptive Information						
Station Type	Streamgage, continuous record					
Location	Lat 36°13'23", long 92°40'47" referenced to North American Datum of 1983, in NW 1/4 NE 1/4 sec.09, T.18 N., R.16 W., Marion County, AR, Hydrologic Unit 11010003, on left bank at bridge on State Hwy 14 at Yellville.					
Gage						
Regulation and Diversions	No known regulation and diversions. It has been observed that extreme low-water flow disappears into streambed a short distance above station. Simultaneous discharge measurements also indicate that there is a large loss in channel flow between mouth of Grassy Creek, 10.3 mi upstream, and station					

	[Drainage_Area				406	square miles	
Harmonic_Mean_Streamflow	6.3	second cubic feet per second	<u>325</u>	Y	8			10/1/1988 9/30/2003

Upstream Data for Station WHI0193

					Ave	
5 (mg/l)	TSS (mg	H3-N (mg/l)	BOD (mg/l)	DO Sat (%)	T (deg C)	DO (mg/l)
.578736	7.578	.016011628	#DIV/0!	97.13%	23.9884	9.40476744
	7	.016011628	#DIV/0!	97.13%	23.9884	9.40476744

	Ave	rage - Prima	ary season			
DO (mg/l)	T (deg C)	DO sat (%)	BOD (mg/l)	NH3-N (mg/l)	TSS (mg/l)	
11.75073	10.94578	97.14%	#DIV/0!	0.024702381	3.97381	

		Rocky Su	ubstrate ⁴		Applicable Ecoregions ⁶	
TSS ¹	SOD ₂₀	SOD ₂₂	SOD ₂₉	SOD ₃₀	SOD ₃₁	Ozark Highlands
15 ²	0.3	0.34	0.51	0.54	0.57	Boston Mountains
20 ²	0.5	0.56	0.84	0.90	0.95	Ouachita Mountains
30 ²	1.0	1.12	1.69	1.79	1.90	
45 ³	1.4	1.57	2.37	2.51	2.66	
90 ³	1.8	2.02	3.04	3.22	3.42	
Mixed Substrate						
TSS ¹	SOD ₂₀	SOD ₂₂	SOD ₂₉	SOD ₃₀	SOD ₃₁	Arkansas River Valley
15 ²	0.4	0.45	0.68	0.72	0.76	Gulf Coastal Plain
20 ²	0.7	0.79	1.18	1.25	1.33	
30 ²	1.3	1.46	2.20	2.33	2.47	
45 ³	1.6	1.80	2.70	2.87	3.04	
90 ³	1.9	2.13	3.21	3.40	3.61	
		Sandy Su	ubstrate ⁴			
TSS ¹	SOD ₂₀	SOD ₂₂	SOD ₃₀	SOD ₃₁	SOD ₃₂	Arkansas River Valley
15 ²	0.5	0.56	0.90	0.95	1.01	Gulf Coastal Plain
20 ²	0.8	0.90	1.43	1.52	1.61	Delta
30 ²	1.5	1.69	2.69	2.85	3.0	
45 ³	1.8	2.02	3.22	3.42	3.62	
90 ³	2.0	2.25	3.58	3.80	4.02	

Sediment Oxygen Demand (SOD) for Various Temperatures and Ecoregion ⁵

¹ Projected TSS instream after mixing.

² TSS values are from MOA with EPA found in the CPP. SOD values for rocky substrate are the lower end of range given in the MOA. SOD values for sandy substrate are the upper end of range given in the MOA.

³ These TSS concentrations are outside of the range given in the MOA, so the corresponding SOD values are estimated.

⁴ SOD values given in this table are the lower and upper ends of the recommended range. SOD values between the upper and lower values are acceptable based on nature of substrate.

⁵ Deviations from these rates may take place in situations of high instream dilution, which significantly reduces the impact of the benthal (sediment) deposits on oxygen consumption. In these situations, justification on a case by case basis will be provided in the documentation submitted to EPA.

⁶ Applicable ecoregions are based on the general characteristics of waterbodies within each ecoregion (Rocky, Gravel, or Mixed). A different substrate type may be used based on site specific observations of the particular stream in question.

Model Input Data

W.S. Drainage Area (mi²): 425

Ecoregion: Ozark Highlands

Q_{DESIGN}: 0.75 MGD

7Q10: 0 cfs^2

Input Model Coefficients

	Reach 1					
Coefficient – at 20° C	Input	t value	Justificatio	on		
BOD _{ult.} /BOD ₅	2.3		EPA Guid	ance		
$K_d(1/day)$	0.5		MOA, roc	ky substrate		
$K_n (1/day)$	0.4		MOA, roc	ky substrate		
SOD $(g/m^2/day)$	0.3		MOA, roc	ky substrate, $TSS = 15$		
$K_a (1/day)$	10.6	(critical season) O'Conner		Dobbins equation		
	10.6	(primary season) O'Conner		Dobbins equation		
	App	plicable Water Qua	ality Standa	rds		
		Critical Season (N	(lay-Oct.)	Primary Season (NovApr.)		
		Reach 1		Reach 1		
D.O. Standard (mg/L)		6.0		6.0		
Temp. Standard (°C)		29		22		

² The entire surface flow in Crooked Creek is diverted underground at Yellville at river mile 23 during low-flow conditions, based on a USGS report entitled, "Streamflow Gain and Loss of Selected Streams in Northern Arkansas", 1987, Freiwald, David A., USGS Scientific Investigations Report No. 86-4185. Therefore, this stream segment is considered a losing stream based on Reg. 6.301(B), and the 7Q10 of Crooked Creek at Yellville is considered to be zero at this discharge location.

Critical Season Stream Hydraulics

Quick Calculator								
0 Headwater in CFS		0.088886	0.5	0.492814	0.4	22.8288	0.1	Accum
			FPS		Feet		Feet	MGD
0.75 Discharger 1 in MGD	Reach 1 V	Velocity	0.096	Depth	0.523	Width	23.171	0.750

Primary Season Stream Hydraulics

Quick Calculator							
0 Headwater in CFS	0.088886	0.5	0.492814	0.4	22.8288	0.1	Accum
		FPS		Feet		Feet	MGD
0.75 Discharger 1 in MGD	Reach 1 Velocity	0.096	Depth	0.523	Width	23.171	0.750

Critical Season Model (34037_C.smp) 10/15/1/6.2 simulation (CBOD5/TSS/NH3/DO)

Cri	itical Season	TABULAR MODEL	OUTPUT	
	River Mile	DO (mg∠L)	BOD (mg∠L)	NH3 (mg/L)
1	0.50	6.20	23.00	1.00
2	0.48	6.14	22.80	0.99
3	0.46	6.09	22.60	0.98
4	0.44	6.06	22.40	0.97
5	0.42	6.03	22.20	0.96
6	0.40	6.00	22.01	0.95
7	0.38	5.98	21.82	0.95
8	0.36	5.97	21.63	0.94
9	0.34	5.96	21.44	0.93
10	0.32	5.95	21.25	0.92
11	0.30	5.95	21.06	0.91
12	0.28	5.95	20.88	0.90
13	0.26	5.95	20.70	0.89
14	0.24	5.95	20.51	0.89
15	0.22	5.96	20.33	0.88
16	0.20	5.96	20.16	0.87
17	0.18	5.97	19.98	0.86
8	0.16	5.97	19.80	0.85
19	0.14	5.98	19.63	0.85
20	0.12	5.99	19.46	0.84
21	0.10	6.00	19.29	0.83
22	0.08	6.01	19.12	0.82
23	0.06	6.02	18.95	0.81
24	0.04	6.03	18.79	0.81
25	0.02	6.04	18.62	0.80
26	-0.00	6.05	18.46	0.79

Critical Season	Run information screen	
Name of receiving s	tream	Crooked Creek
Number of discharge	s (max = 10)	1
Number of reaches	(max = 10)	1
Reaeration type	(O, T, M)	O'Connor-Dobbins
Run title for scree	n display	Critical Season
Graphics printer ty	pe (HP, FX, LQ, None)	None
Printed graph resol	ution (Low, Med, High)	None

Critical Season	Upstream River Pa	Comments	
Flow	(cfs)	0.00	Losing Stream
Temperature	(°C)	29.00	wqs
Dissolved Oxygen	(mg/1)	7.40	97%sat WH10193
5-Day BOD	(mg/1)	1.00	default
Ult. CBOD / 5-Day BO	D	2.30	default
pН	(su)	7.00	default
Ammonia	(mg/1)	0.02	WH 10193
Alkalinity	(mg/1)	-0.00	
Upstream river mile		0.50	

Critical Season	Parameters for I)ischarge 1	Comments
Flow	(MGD)	0.75	design flow
Temperature	(°C)	29.00	wqs
Dissolved Oxygen	(mg/1)	6.20	permit
5-Day BOD	(mg/1)	10.00	permit
Ult. CBOD ≠ 5-Day BOI	D	2.30	default
рН	(su)	7.00	default
Ammonia	(mg/1)	1.00	permit
Alkalinity	(mg/1)	-0.00	
Beginning of Reach N	umber	1	
Name of Discharger		Yellville	

Critical Season Pa	arameters for I	Reach 1	Comments
Length	(mile)	0.50	
Velocity	(fps)	0.10	spreadsheet
Slope	(ft∕mile)	9.06	streamstats
Average Depth	(ft)	0.52	spreadsheet
Temperature	(°C)	29.00	Calculated
BOD Removal Rate	(1/day)	0.50	MDA, rocky subs
NH3 Decay Rate	(1/day)	0.40	MDA, rocky subs
Sediment Oxygen Demand	(g/m²/day)	0.51	k20=0.3(TSS=15)
Photosynthesis/respiration	n (mg/L/day)	-0.00	

Primary Season Model (34037_P.smp) 10/15/5/6 simulation (CBOD5/TSS/NH3/DO)

		TABULAR MODEL	OUTPUT	
	River Mile	DO (mg∕L)	BOD (mg∕L)	NH3 (mg/L)
1	0.50	6.00	23.00	5.00
2	0.48	6.09	22.85	4.98
3	0.46	6.16	22.71	4.96
4	0.44	6.23	22.56	4.94
5	0.42	6.29	22.42	4.92
6	0.40	6.34	22.28	4.90
7	0.38	6.39	22.14	4.88
8	0.36	6.43	22.00	4.86
9	0.34	6.47	21.86	4.84
10	0.32	6.50	21.72	4.82
11	0.30	6.53	21.58	4.80
12	0.28	6.56	21.44	4.78
13	0.26	6.59	21.30	4.76
14	0.24	6.61	21.17	4.74
15	0.22	6.63	21.03	4.72
16	0.20	6.65	20.90	4.70
17	0.18	6.67	20.77	4.68
18	0.16	6.69	20.64	4.67
19	0.14	6.71	20.50	4.65
20	0.12	6.72	20.37	4.63
21	0.10	6.74	20.24	4.61
22	0.08	6.75	20.12	4.59
23	0.06	6.76	19.99	4.57
24	0.04	6.77	19.86	4.55
25	0.02	6.79	19.73	4.53
26	-0.00	6.80	19.61	4.52

Ru	n information screen	
Name of receiving stream	Crooked Creek	
Number of discharges	(max = 10)	1
Number of reaches	(max = 10)	1
Reaeration type	(O, T, M)	O' Connor-Dobbins
Run title for screen displ	ay	Primary Season
Graphics printer type	(HP, FX, LQ, None)	None
Printed graph resolution	(Low, Med, High)	None

	Upstream River Pa	Comments	
Flow	(cfs)	0.00	Losing Stream
Temperature	(°C)	22.00	wqs
Dissolved Oxygen	(mg/1)	8.45	97%sat WH10193
5-Day BOD	(mg/1)	1.00	default
Ult. CBOD ≠ 5-Day BOI		2.30	default
рН	(su)	7.00	default
Ammonia	(mg/1)	0.02	WH 10193
Alkalinity	(mg/1)		
Upstream river mile		0.50	

	Parameters for I)ischarge 1	Comments
Flow	(MGD)	0.75	design flow
Temperature	(°C)	22.00	wqs
Dissolved Oxygen	(mg/1)	6.00	permit
5-Day BOD	(mg/1)	10.00	permit
Ult. CBOD / 5-Day BOI		2.30	default
рН	(su)	7.00	default
Ammonia	(mg/1)	5.00	permit
Alkalinity	(mg/1)		
Beginning of Reach Nu	umber	1	
Name of Discharger		Yellville	

1	Parameters for Reach 1		Comments
Length	(mile)	0.50	
Velocity	(fps)	0.10	spreadsheet
Slope	(ft∕mile)	9.06	streamstats
Average Depth	ſtÐ	0.52	spreadsheet
Temperature	(°C)	22.00	Calculated
BOD Removal Rate	(1/day)	0.50	MDA, rocky subs
NH3 Decay Rate	(1/day)	0.30	MDA, rocky subs
Sediment Oxygen Demand	(g∕m²∕day)	0.34	k20=0.3(TSS=15)
Photosynthesis/respiration	on (mg/L/day)		